Introduction[]
We have always seen some characters attacking on another character and sending him/her/it flying.
This blog serves to find the energy yield from sending a person flying at different speed and across different distances.
Methodology[]
Here an average 2016 Japanese male at 25-29 is picked. Because most anime comes from Japan. Fight me.
The target weighs at 66.82 kg and stands at 1.7185 m.
To make a target fall, the center of gravity is likely falling from roughly half his own height to roughly ground floor.
Height to fall = 1.7185/2 = 0.85925 m
By PE to KE formula, mgh = 0.5 m v^2
(9.81)(0.85925) = (0.5) v^2
v = ((2)(9.81)(0.85925))^0.5 = 4.105908547
time to fall to this speed = 4.105908547 / 9.81 = 0.418543175 s
Now, the kinetic energy from the yield of an attack should 1-to-1 scale to the target hit who flies at a distance before hitting the ground - in 0.418543175 s.
AP of an attack = Kinetic energy carried by the target = 0.5 x mass x (velocity)^2
Tally[]
The table below lists out the enrgy required to send a person flying at a speed across a distance using the Newtonian energy model.
Range (m) | Speed (m/s) | Speed (Mach) | Energy in Joules | Energy in Tons of TNT | Tier |
---|---|---|---|---|---|
0.5 | 1.194619886 | 0.003482857 | 47.679968 | 1.13958E-08 | Average human |
0.724105801 | 1.730062379 | 0.005043914 | 100 | 2.39006E-08 | Athletic human |
0.75 | 1.791929829 | 0.005224285 | 107.279928 | 2.56405E-08 | Athletic human |
1 | 2.389239772 | 0.006965714 | 190.719872 | 4.55831E-08 | Athletic human |
1.024040244 | 2.446677679 | 0.007133171 | 200 | 4.78011E-08 | Athletic human+ |
1.254188037 | 2.99655594 | 0.008736315 | 300 | 7.17017E-08 | Peak human/Street |
1.5 | 3.583859657 | 0.01044857 | 429.119712 | 1.02562E-07 | Peak human/Street |
2 | 4.778479543 | 0.013931427 | 762.8794879 | 1.82333E-07 | Peak human/Street |
2.092715875 | 5 | 0.014577259 | 835.25 | 1.9963E-07 | Peak human/Street |
3.222782448 | 7.7 | 0.02244898 | 1980.8789 | 4.73441E-07 | Peak human/Street |
4.101723116 | 9.8 | 0.028571429 | 3208.6964 | 7.66897E-07 | Peak human/Street |
5.23597512 | 12.51 | 0.036472303 | 5228.668341 | 1.24968E-06 | Peak human/Street |
6 | 14.33543863 | 0.041794282 | 6865.915391 | 1.64099E-06 | Peak human/Street |
6.333339138 | 15.13186576 | 0.044116227 | 7650 | 1.82839E-06 | Peak human+/Street+ |
8.868448661 | 21.18885025 | 0.061775074 | 15000 | 3.58509E-06 | Wall |
10 | 23.89239772 | 0.069657136 | 19071.9872 | 4.55831E-06 | Wall |
14.3560309 | 34.3 | 0.1 | 39306.5309 | 9.39449E-06 | Wall |
50 | 119.4619886 | 0.348285681 | 476799.68 | 0.000113958 | Wall |
71.78015452 | 171.5 | 0.5 | 982663.2725 | 0.000234862 | Wall |
100 | 238.9239772 | 0.696571362 | 1907198.72 | 0.000455831 | Wall |
129.2042781 | 308.7 | 0.9 | 3183829.003 | 0.000760953 | Wall |
143.560309 | 343 | 1 | 3930653.09 | 0.000939449 | Wall |
157.91634 | 377.3 | 1.1 | 4756090.239 | 0.001136733 | Wall |
234.2736864 | 559.7360091 | 1.631883408 | 10467500 | 0.002501793 | Wall+ |
331.19431 | 791.3026175 | 2.307004716 | 20920000 | 0.005 | Small building |
358.9007726 | 857.5 | 2.5 | 24566581.81 | 0.005871554 | Small building |
500 | 1194.619886 | 3.48285681 | 47679968 | 0.011395786 | Small building |
717.8015452 | 1715 | 5 | 98266327.25 | 0.023486216 | Small building |
1000 | 2389.239772 | 6.96571362 | 190719872 | 0.045583143 | Small building |
1435.60309 | 3430 | 10 | 393065309 | 0.093944864 | Small building |
1672.449284 | 3995.882346 | 11.64980276 | 533460000 | 0.1275 | Small building+ |
2341.897425 | 5595.354468 | 16.31298679 | 1046000000 | 0.25 | Building |
3589.007726 | 8575 | 25 | 2456658181 | 0.587155397 | Building |
4967.914649 | 11869.53926 | 34.60507073 | 4707000000 | 1.125 | Building+ |
5000 | 11946.19886 | 34.8285681 | 4767996800 | 1.139578585 | Building+ |
6623.886199 | 15826.05235 | 46.14009431 | 8368000000 | 2 | Large building |
7178.015452 | 17150 | 50 | 9826632725 | 2.348621588 | Large building |
9264.4532 | 22135.00005 | 64.53352784 | 16369504368 | 3.912405442 | Large building |
10000 | 23892.39772 | 69.6571362 | 19071987198 | 4.55831434 | Large building |
11941.38067 | 28530.82162 | 83.18023795 | 27196000000 | 6.5 | Large building+ |
14356.0309 | 34300 | 100 | 39306530900 | 9.394486353 | Large building+ |
14811.45982 | 35388.12887 | 103.1723874 | 41840000000 | 11 | City block |
34893.48575 | 83368.90391 | 243.0580289 | 2.32212E+11 | 55.5 | City block+ |
46837.94849 | 111907.0894 | 326.2597357 | 4.184E+11 | 100 | Multi City Block |
50000 | 119461.9886 | 348.285681 | 4.768E+11 | 113.9578585 | Multi City Block |
100000 | 238923.9772 | 696.571362 | 1.9072E+12 | 455.831434 | Multi City Block |
109844.7259 | 262445.3878 | 765.1469031 | 2.3012E+12 | 550 | Multi City Block+ |
143560.309 | 343000 | 1000 | 3.93065E+12 | 939.4486353 | Multi City Block+ |
148114.5982 | 353881.2887 | 1031.723874 | 4.184E+12 | 1000 | Small town |
273109.8245 | 652524.8547 | 1902.404824 | 1.42256E+13 | 3400 | Small town+ |
356707.1885 | 852259.0015 | 2484.720121 | 2.42672E+13 | 5800 | Town |
500000 | 1194619.886 | 3482.85681 | 4.768E+13 | 11395.78585 | Town |
1000000 | 2389239.772 | 6965.71362 | 1.9072E+14 | 45583.1434 | Town |
1077272.815 | 2573863.055 | 7503.973922 | 2.21334E+14 | 52900 | Town+ |
1255629.525 | 3000000 | 8746.355685 | 3.0069E+14 | 71866.6348 | Town+ |
1481145.982 | 3538812.887 | 10317.23874 | 4.184E+14 | 100000 | Large town |
3473595.227 | 8299251.868 | 24196.06958 | 2.3012E+15 | 550000 | Large town+ |
4683794.849 | 11190708.94 | 32625.97357 | 4.184E+15 | 1000000 | Small city |
6371000 | 15221846.58 | 44378.56147 | 7.74125E+15 | 1850203.426 | Small city |
The table below lists out the enrgy required to send a person flying at a speed across a distance using the relativistic energy model.
Range (m) | Speed (m/s) | Speed (Mach) | Energy in Joules | Energy in Tons of TNT | Tier |
---|---|---|---|---|---|
1255629.525 | 3000000 | 8746.355685 | 3.00713E+14 | 71872.03271 | Town+ |
1481145.982 | 3538812.887 | 10317.23874 | 4.18444E+14 | 100010.4517 | Large town |
3473595.227 | 8299251.868 | 24196.06958 | 2.30252E+15 | 550316.3282 | Large town+ |
4683794.849 | 11190708.94 | 32625.97357 | 4.18838E+15 | 1001046.261 | Small city |
6371000 | 15221846.58 | 44378.56147 | 7.75625E+15 | 1853788.582 | Small city |
One thing: I include a dataset for a distance of 9264.4532 m as the farthest horizon a human eye can see. Working:
Average US human height = (1.753 + 1.615)/2 = 1.684 m
Earth mean radius = 6371000 m
For two identical human to see each other at a distance, the farthest distance the one would travel away from the other standing still yet seeing each other can see each other = Arc(G1-M-G2) = 2 times Arc(G1-M)
G1-M = OM * angle(G1-O-M)
cos(angle(G1-O-M))= OM / (H1-G1 + G1-O) = 6371000 / (6371000 + 1.684)
angle(G1-O-M) = 0.00072708 rad
Arc(G1-M) = 4632.2266 m
Picture |
---|
![]() |
Findings - On Request (Re Battle for Dream Island)[]
UltraChair wrote:
Priority: 1 (Would scale to the whole verse.)
Verse: Battle for Dream Island
Feat: Coiny throws a stick 2,760 miles.
Assume a wooden stick at 60 inches weighs 610 g or 0.61 kg, a wooden stick at 8 inches should weigh 81.33333333 g or 0.08133333333 kg.
Taking the distance literally, the stick must have thrown at over 2,760 miles which means possibly 4441789.44 m.
Since it stops at about 1 second, the stick must have flown at at least 4441789.44 m/s. 1.4805965% light speed man.
Assume Newtonian KE model still stands, KE yield = 8.02333E+11 J = 191.7621254 tons TNT (Multi City Block)
Assume relativistic KE model applies, KE yield = 8.02465E+11 J = 191.7937022 tons TNT (Multi City Block)
Findings - Credits to Psychomaster35 (Re Battle for Dream Island)[]
By comparing the stick to Pin's height ([[User blog:Psychomaster35/My 2nd Calc: A BFB Calc#X goes to the center of the Earth|see this for reference]), the stick should be 27.92699307283465 inches and 0.283924429574 kg.
Taking the distance literally, the stick must have thrown at over 2,760 miles which means possibly 4441789.44 m.
Since it stops at about 1 second, the stick must have flown at at least 4441789.44 m/s. 1.4805965% light speed man.
Assume Newtonian KE model still stands, KE yield = 2.80084E+12 J = 669.4174436 tons TNT (Multi City Block+)
Assume relativistic KE model applies, KE yield = 2.8013E+12 J = 669.5276767 tons TNT (Multi City Block+)