Character Level Wiki

I'm going to assume both walls of that skyscraper are at 45 deg angle to the screen as it clearly looks that way

Letter 14 px - 9.14 m

Length of the building: - 131 px - 85.52 m

True length: 85.51/cos45 deg = 120.92 m

Height 1 - 107 px - 69.86 m

Width 1, 46 px - 30.03 m

True width  1 - 30.03/cos45 deg = 42.47 m

Heigh 2 - 173 px - 112.94 m

Width 2 - 60 px - 39.17 m

True width 2 - 39.17/cos45 deg = 55.39 m

Height 3 - 134 px - 87.48 m

Width 3 - 65 px - 42.44 m

True width 3 - 42.44/cos45 deg = 60.02 m

Innitial support: 11 px - 7.18 m

Volume 1: 

120.92*69.86*42.47 = 358764.10 m^3

Volume 2:

120.92*112.94*55.39 = 756444.88 m^3

Volume 3: 

120.92*87.48*60.02 = 634896.45 m^3

Total volume: 634896.45+756444.88+358764.10 = 1750105.43 m^3

Using density of 316  kg/m^3 we will get...

1750105.43*316 = 553033316 kg

Cross sectional area of the building: 

69.86*42.47+112.94*55.39+87.48*60.02 = 14473.25 m^2

Rotational volume 1 (as 3 cilinders, axis across the building's corner):

1) 69.86*pi*42.47^2 = 395861.24 m^3

2) 112.9*pi*55.39^2 = 1088194.55 m^3

3) 87.48*pi*60.02^2 = 990035.19 m^3

Total rotational volume: 990035.18+1088194.55+395861.24 = 2474090.97 m^3

Now the can use Pappu's centroid theorem to find the center of mass:

2474090.97/(2*pi*14473.25) = 27.21 meters from the front of the building

For the second rotational volume (as 3 cilinders, axis as the base of the building) we need to subtract width of each section of the building to get the hight of each of the cilinders

60.02-55.39 = 4.63 m

55.39-42.47 = 12.92 m

Rotational volume 2

1) 42.47*pi*(69.86+112.94+87.48)^2 = 9746752.86 m^3

2) 12.92*pi*(69.86+112.94)^2 = 1356328.13 m^3

3) 4.63*pi*69.86^2 = 70988.50 m^3

70988.50 + 1356328.13 + 9746752.86 = 11174069.50 m^3

So according to the Pappu's centroid theorem the center of mass is also:

11174069.50/(2*pi*14473.25) = 122.88 meters above the ground.

Knowing the location of the center of mass we can find the angle of it in relation to the opposite side of the building and the distance from it

60.02-12.92 = 47.10 meter away from the back of the building 

Angle: atan(47.1/122.88) = 0.366 rad

Distance from the opposite corner (hypotenuse): sqrt(47.1^2+122.88^2) = 131.60 m

I don't have any problem this the second scan from my old calc so I gonna use his values:

Total Falling Distance: 7.18 - (1.78+1.381) = 4.02 m

Tipping angle: asin(4.02/60.02) = 0.0670 rad

Finally, we can find the displacement of the center of mass and total potential energy

0.0670+0.366 = 0.433 rad

131.60*(1-cos0.366) =  8.72 m

131.60*(1-cos0.433) = 12.15 m 

12.15-8.72 = 3.43 meters

PE = 553033316*9.81*3.43 = 1.86086309e10 Joules, 4.45 tons (Large Building level)

Now lifting strength:

131.60*sin0.433 = 55.22 m 

553033316*(55.22/60.02) = 508805393 kgf (Class M)